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Abstract

We consider the random variable 7,, , = Y7 +2°Y> 4 ... +n%Y,,, with « € R and Y3, Y5,. ..
independent and exponentially distributed random variables with mean one. The distribution
function of Z,, , is in terms of a series with alternating signs, causing great numerical difficulties.
Using an extended version of the saddle point method, we derive a uniform asymptotic expansion
for P(Z,,o < x) that remains valid inside (o > —1/2) and outside (o < —1/2) the domain of
attraction of the central limit theorem. We discuss several special cases, including o = 1, for
which we sharpen some of the results in [7].
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1 Introduction
We consider the random variable
Zpna=Y14+2Y24 ... +n°Y,, (1)

where @ € R and Y7, Y5, ... are independent and exponentially distributed random variables with
mean one. It is fairly straightforward to derive an explicit expression for the distribution function
P(Zy,o < z) in terms of an alternating series, see (), but this series gives rise to severe numerical
problems. In this paper we derive an expansion for the distribution function that will provide
arbitrarily sharp approximations, uniformly for all > 0. We derive the expansion by applying an
extended version of the saddle point method. In order to do so, we first write P(Z,, , < x) as a
contour integral that arises from applying the inversion formula to the Laplace transform of Z,, ..
We then transform the integral and apply the saddle point method, in a way that is reminiscent of
the saddle point approximation developed by Lugannani and Rice [8] for the sum of i.i.d. random
variables.

Apart from the case @ = 0, the sum in (Il consists of random variables having different dis-
tributions. Our primary motivation for undertaking this studies is to demonstrate how the saddle
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point method, along with some other asymptotic methods, leads to a tractable uniform expansion
for P(Z,,o < x) that is sharp even for small values of n and z away from the mean. We have three
more motivations for undertaking this effort:

e The random variable Z, , for the case a = 1 occurs in various contexts, such as linear
combinations of order statistics [4], [9], noise in radio receivers [5], and urn models [6], [7].
Kingman and Volkov [7] first apply the central limit theorem (CLT) to Z,; and then derive
the order of the error made by approximating a normalized version of Z,, ; by N(0,1). Our
uniform expansion extends the results in [7].

e In fact, for all values oo > —%, the random variable Z,, ., after appropriate scaling, obeys the
CLT and converges to a standard normal random variable. The resulting normal approxi-
mation to P(Z, . < ) is useful for large n and x close to the mean of Z,, ,. However, for
increasing values of «, or for values of x far from the mean, the CLT kicks in ever more slowly.
Our asymptotic expansion corrects for these effects.

e Our expansion remains valid for o < —1/2. For o« = —1 the random variable Z,, , describes
the maximum of n i.i.d. exponentially distributed random variables. This is a classic example
from extreme value theory, for which, as n — oo, Z,, o follows the Gumbel distribution. For
o = —2, Z, o follows the Kolmogorov distribution, another classical distribution that plays for
instance a role in the study of Brownian excursions in relation to the Riemann zeta function

.

In Section [2 we derive an integral representation for P(Z, o < x) in terms of a contour integral
in the complex plane. In Section [B] we use this integral representation to derive the asymptotic
expansion for P(Z,, o < x), which holds uniformly for z > 0. In Section @l we evaluate the coefficients
in the expansion, in Section [§] we discuss several special cases, and in Section [6] we present some
numerical results.

2 Integral representation

The Laplace transform vy, o(s) = E(e=%%ne) of Z, , can be represented as

with
Mine=J[ = &) (3)

1<k<n,k#j

Let F, o(x) =P(Z,, > x). It is readily seen from (2)) that

\)



For the case a = 1, we can write the distribution function as

le(:p) _ (=) Z <n> (_1)jjne—m/j7 (5)

=1 ™

The limiting values at x = 0 and z = oo are given by
Fn,l(O) == 1, Fn,l(oo) =0. (6)

The value F), 1(0c0) follows easily from (B]) and F, ;(0) follows from a relation with the Stirling
numbers of the second kind, viz.

st = o) e @

([I1], p. 21]), which has the property Sr(Ln) =1.
Evaluating the sum in may cause severe cancelation of leading digits. For example, the sum
for n = 100 and = = 5000 i

F,1(x) = 0.51721318855009723..., (8)

but the terms in the sum (divided by n!) range in magnitude from 1072327 (for j = 1) to 10%7 (for
j = 86), and the alternating signs should provide the proper answer. That is why we now derive
an asymptotic expansion, of which only the first few terms will already give sharp approximations
for F, o(z). To obtain the expansion, we first derive an integral representation for F, ,(z) in terms
of a contour integral in the complex plane. We start with the representation

Fpox) =1—-Gpa(x), 9)

where Gy, o(z) has the integral representation

1 exs
Gnalw) = 2mi /L s(s+1)(2%s+1)--- (n*s+ 1) s, (10)

and £ is a contour running in the positive (i.e., anti-clockwise) direction around the poles at s =0
and at s = —j7%, 7 =1,2,...,n. Taking into account the behavior of the integrand as s — 4ioo,
we can deform the finite contour into two vertical lines, one with s < —n~™% and one with s > 0.
The left line can be shifted to the left as far as we like, and its contribution vanishes as we shift it
to —oo. So we are left with one vertical line £ with Rs > 0, and the integration runs from —ioco to
~+100.

By shifting the vertical line £ in ({IQ) to the left, across the n + 1 poles, we obtain a sum of
residues. The residue at s = 0 equals 1, and at s = —537%,j =1,2,...,n, it equals —e_xjia/l_[j,ma.
In this way we obtain the sum in (). On the other hand, when 2 = 0 we can shift the vertical line
L in ([I0) to the right, as far as we like, and its contribution vanishes as we shift it to +oo. This

!George Marsaglia mentioned on June 30, 1999 this case in Article 47714 of the Internet newsgroup sci.math.num-
analysis , “A tough numerical problem”, and wondered if it would be possible to evaluate, to at least 6-digit (single-
precision) accuracy, the sum for the given values of  and n in (@) using IEEE standard double-precision arithmetic.



shows that Gy, (0) = 0, which confirms (@l).
When a = 0 we have

1 eZES
wo(r) = — [ —C4s, 11
Gno(@) 27i /E s(s+1)» ds (11)

and this integral can be written in terms of the incomplete gamma function. We have (see [I1],
pp. 282-283))
Gn,O(:E) = P(TL,ZE), Fn,O(:E) = Q(’I’L,ﬂj‘), (12)

where the incomplete gamma functions P and @ are defined by

P(a,z) =

1 z a—1 —t o L OO a—1_-—t
F(a)/ot e "dt,, Q(a,z)—r(a)/z t* et dt. (13)

When o = 1 we can write the integrand of (I0) in the form

e’ e D(1+1/s)
s(s+1)2s+1)---(ns+1) st T(n+1+1/s) (14)

3 An asymptotic expansion of F,, ,(x)

For obtaining an asymptotic representation we apply the saddle point method (see [13 Ch. 2]). We

write 1 p
L RO
Guale) = 5 [ O, (15)
where
d(s)=xzs—In((s+1)(2% +1)--- (n%s+1)). (16)

The saddle point, defined by the s—value for which ¢'(s) = 0, is governed by the equation

1 2% ne

s+1+2as+1+”'+nas+1'

(17)

It is not difficult to verify that, if x > 0, this equation has a unique solution sg in the interval
(—1/n%, 00); see Figure[ll The curve represents the right-hand side of (I7), and it cuts the vertical
axis at a point indicated by (see also Theorem [5.1))

fina =E(Zno) =1+2%+- - +n% (18)

If © > 1, o the saddle point is negative, as shown in Figure[ll If z = p,, o the pole at the origin
in (&) coincides with the saddle point. As explained in [I3 Ch. 7] we can use an error function to
handle this case. When x ~ u,, o we have the approximation

T — [na

19
Hn 20 ( )

So ~ —
We transform the integral into a standard form for applying Laplace’s method [13, Ch. 2] by
substituting

$(s) — d(s0) = g (20)



Figure 1: The saddle point sy is the solution of the equation (IT). The curve represents the
right-hand side of (7))

and prescribe that w has the sign of s — sg for real values of s with s > —n~¢.

We obtain from (3]

efls0) i dw
Gunl) = G [ e )2 (21)
where ¢ d
w—¢§ ds
flw) =5 (22

and ¢ is the w—value that corresponds with s = 0. That is, since ¢(0) = 0,
12 =9(0) — ¢(s0) = —d(s0) = &= +/—26(s0), (23)

where £ has the sign as prescribed in the mapping in (20)). Thus, £ should have the sign of —sq, or
in other words, { has the sign of (x — p,4).

Because ¢(0) = 0, and ¢(s) — 400 as s — —n~* and s — +oo, it follows that ¢(sg) is
non-positive. Also, f(§) =1, as easily follows from (22]) by applying I'Hopital’s rule.

We see that, when sy > 0 and we take the vertical line through sg, the pole at s = 0 is at the
left side of £. We obtain the same situation in (ZI)): if sg > 0, that is, £ < 0, then the pole at
w = ¢ is at the left of the saddle point at w = 0. To handle the integral in ([21]) for small values of
¢ (when x ~ py, o) we regularize the integrand by splitting off the pole at w = £ writing

f(w) 1 flw) =1

- - =7 - 24
S = glw) + =5 a(w) = T2 (24)
This gives
e¢(30) 100 1w2 dw e¢(30) 100 1w2 dw
Gnal®) = 355 /_ioo “ w—e T om /_Z-OO et glw) T (25)



The first integral can be written as (by substituting w = it)

#(s0) [ioo ¢(sg) foo
e 0 / phu? dw _e . / it dt' ‘ (26)
21 ) e w—& 2m ) _ o t+ i€

When £ < 0 this integral can be written as a complementary error function and a w—function; see
m. In this way, by using also (23)),

e /00 e ) w (~ig/V2) = Jerfe (~¢/v2). (27)

2mi J_ o t+ i€

The right-hand side is an entire function of &, and we will use this relation for all real &, although
the starting point for evaluating the integral in (27]) was £ < 0.
The function ¢ is analytic in the same domain as where f is analytic. We expand

g(w) = Z cpwk. (28)
k=0
This gives the asymptotic expansion
1 efleo) & k ok (1
o) ~ Lerfe(—€/V2) + =3 oy Cr = (~1)F 28 (1) o (20)

For the function F, ,(x) we obtain, using (@) and 1 — erfc z = derfc(—2), our main result:

Fo.a(z) ~ —erfc(f/\/_ (30)

V”ko

There is no large parameter showing in the asymptotic series, but the coefficients contain the
asymptotic information. The expansion holds for large values of n, uniformly with respect to x > 9,
where ¢ is a fixed positive number. For further information on this point we refere to §4.2

4 Evaluating the coefficients

For evaluating the coefficients C}, in (30) we need the coefficients by in the expansion
o0
S = Zbk’wk, bo = S0, (31)

which follow from the inversion of ([20)). Let

(=0t ae=0"s) (32)
k=0

*http://dlmf.nist.gov/7.7.i, http://dlmf.nist.gov/7.7.E2



with a; = ¢/(sp) = 0. Then the first coefficients by are given by

bo = so blzi 2:__% 3:M
’ Vaz' Ga3 72ay/”
(33)
by = 45a0a3a4 — 40a§ — 9a§a5
1080a3
By using (22)) and ([23]) we find the coefficients coi, of g(w) in ([28]). We have for the coefficients Cy
and Cq:
s0+/az +¢&
Cy=2V2 T8
50+/az§
(34)
c 12a3a3s50€3 + 24a3&3 + 5si&3ada3 — 3¢3ska3aq + 2438a%1/2
1=

245330 11/2

4.1 Expansions of the coefficients near the mean

For small values of sy (or ) we need expansions in terms of one of these small parameters. First
we need the expansion of z in powers of sy (which is the solution of ([I7)). We can expand

o0

T = ln,a — Hn,2a50 T ,un,3a83 - Z :un J(k+1) aslg' (35)
k=0
Furthermore, we have
, n G ) L n jak
=x— =(—1)%k-1)! — k>2 36
¢(s) == ;jasﬂ, 0™ (s) = (~1)*( );(jas+1)k, >2, (36)
and
o(s) = (& — pn,a) s+ %,un,gasz — %,un,gasg +.... (37)
Using (35]) we obtain
B(S0) = — 3 in 2050 + 2hn3a50 — S hndasyt - - (38)
We obtain, using (31),
= (mAk—1) m
ar = ¢W(s0) = (-1)F Y~ (T)(—So) P, (k+m)ac> (39)
m=0 ’
and, using (23] and (38)),
“m-—1
=23 ———mmal(=s0)" (40)
m=2



This gives (recall that ¢ has the sign of —sg, cf. the definition of ¢ in (23)))

2Nn,3oz 27lun,4ouun,2a - 8/‘%,3& 2 ) (41)

S0 sq+ ...
Bfin, 20 36112 20 ’

§ = —\/Hn2a S0 (1—

By using ([89) and (#I]) we can obtain expansions for the quantities C}, of ([B0]). For example,

_ 1 Hn,3c 1 9,un,2a,un,4a — 10,&%730

2
Co = 37372 12 5/2 so+ O (s0) , (42)
Mn72a lu’n,20c
and . )
1 6750n 20k 3akn 40 — 350y 3 — 32447 o0 lin5
- SO (43)
Mn72a

4.2 On the order of growth of the coefficients at the mean

The coefficients Cy, of ([B0]) constitute an asymptotic scale for large n. This means Ci11 = 0 (Cy)
as n — o0o. We verify this property at the mean, that is, when & = ji,, o, or 59 = 0. Exact values
of Cy and C} are given in ([(42) and [@3) with so = 0.

To estimate these coefficients for large n we observe that for o > —1 we have i, o = O (naH).
It follows that for o > 0

Co=0 (n-1/2> , =0 (n—3/2) . (44)

Considering C), with higher k£ we see the same pattern as in Cy and C7: the numerator of Cj, contains
a sum of products b, 5, pif 5, -+ and all these terms are of the same order O (n3ZFT1ot2k+1) “The

denominator is of order O (n?(2F+1a+3k+3/2) "which gives
Cp=0 (n—’“—l/?) . k=0,1,2,.... (45)

This has been derived at the mean for o > 0. When —% < a <0, fp2q is still growing and the
verification that C}, constitutes an asymptotic scale can be slightly modified, although other fi, jq
may have order O(1).

5 Special cases

We shall now discuss some special cases related to specific values of «.

5.1 Central limit theorem (a > —%

We first consider those values of « for which Z,, ,, falls within the domain of attraction of the CLT.
Let —2 denote convergence in distribution, and let N (0, 1) be a standard normal random variable.

Theorem 5.1. For o > —%,

7 —
Zna = Hna 4, N, 1), (46)

On,a

as n — 00, where i, o =142%+---+n% and o , =14 22" 4 ... 4 n2*_



Proof. We shall use the CLT with Lyapunov conditions (see [3, p. 211]). For S, = 7, X,
sn = (35— Var(X;))%2, it is known that if

S E(X ) /sn — 0. (a7)

then S, /sy <, N(0,1). With X; = j(Y; — 1), @) is equivalent with

I v Y L
n,a (Zgz:ljza)3/2

The latter is only true for a > —%. O

0. (48)

An alternative proof of (@) can be obtained from expanding the Laplace transform. That is,

n n . 3 1e -3
eXP(SNn,a/UnA) _ J 2 J 3 J
]11 1+ Sjo‘/Un,a = eXp(S,Un,a/Umoc) exXp ]Z:; <3 Tna S 20_%@ +s 30_%@[ .
= exp <%s2 —Tnas® + .. ) . (49)
The CLT thus applies, and gives
Fra(z)~1-® (&> , (50)
On,a

where ®(z) is the normal distribution function

O(z) = \/%_w /_r e /2 gt = %erfc(—x/\/ﬁ). (51)

The approximation (50]) is in particular useful for large values of n, with z close to p, . Observe
that from (I9) and ({Il) we can derive

&~ m, as T~ finas (52)
On,a
which shows that the term with the complementary error function in ([B0) corresponds with the
approximation in (B0), when x ~ fi;, 4.
We shall now compare (B0) with our uniform expansion (B0, for which we consider o = 1,
n = 100, x = 5000 and compare the approximations in (50) and (30) with the value given in (8.
Then (see (I8) 1 = ftn,1 = 5050 and o, 1 = 581.6786 . ... This gives for (50) the CLT approximation

Fi(2) ~ 0.53425. (53)

Next we consider ([B0). We have so = 0.0001494392... and £ = —0.08627917 ..., which gives
(by taking only the error function)
Fo1(x) ~ 0.53438. (54)



Taking into account the first term of the expansion we have Cy = 0.0432412. .., which gives
Fp1(x) ~ 0.51719. (55)

Comparing this with (8) we observe a relative error 0.42 x 10~%. Including the contribution from
Cy = —0.5616593 x 104, we obtain

Fpi(z) ~ 0.51721340, (56)

with relative error 0.42 x 1075,
More numerical details will be given in Section

5.2 Erlang distribution (o = 0)

Remember that for & = 0 the random variable Z,, , is in fact an i.i.d. sum of exponentials, and
the distribution function is in fact the Erlang distribution, which can be expressed in terms of the
incomplete gamma function, see (I2)). For o = 0, we have

30:§—1, d(so) =n(l—=A+1InX), A=-—, (57)

SRS

and

E=12n(—1+X—1n}), ay=n)? (58)

where ¢ has the sign of A — 1. This gives the same coefficients Cy (up to scaling) as derived in
[10] for the incomplete gamma functions. The first term in the expansion ([B0) agrees with the first
term in the Lugannani and Rice formula [§] for the sums of i.i.d. random variables.

5.3 Gumbel distribution (@ = —1)

For o« = —1 we have that

Gna(z) =1+ (?) (1™ =(1-e)", (59)

and in fact, Z, _; is equal in distribution to max{Y7,Y>,...,Y,}, with Y3,Y5,... the ii.d. unit
mean exponentials, as before. From extreme value theory we know that the distribution of Z,, _;
then converges to a double exponential or Gumbel distribution. That is, as n — oo,

Zy 1 —logn ~5 W, (60)
with P(W < z) = exp(—e™™), « € R. For the Laplace transform we find that

e5/i

T+ 577 =e"T'(s+1), (61)

n—oo

n

. no -1 .
lim I/n7_1(8)682321] = lim H
n—oo
]:

with v = 1imnﬁoo(2?:1j‘1 —logn).

10



Table 1: Values of F,, for n = 10 and = 0.994, o, CLT is obtained from (B0), erfc from
B0) (without terms) and dg, dy are the relative errors by taking the terms Cy and Cj, Cy in the

expansion.

x

Fn,a

CLT

erfe

0o

)

-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0

1.5342701
1.9753831
2.8996786
4.9707880
9.9000000
22.243595
54.450000
141.24559
381.15000

0.38907739
0.40553885
0.43228537
0.46046846
0.47050158
0.46580821
0.45853324
0.45179788
0.44578999

0.50594346
0.50727377
0.50938537
0.51170255
0.51261356
0.51208461
0.51118113
0.51034755
0.50964906

0.50597034
0.50730961
0.50943135
0.51174833
0.51265584
0.51212754
0.51122320
0.51038785
0.50968747

0.91e-2
0.13e-1
0.12e-1
0.35e-2
0.37e-4
0.54e-3
0.13e-2
0.22e-2
0.31e-2

0.60e-2
0.42e-2
0.53e-3
0.82e-3
0.11e-4
0.22e-4
0.99e-4
0.21e-3
0.36e-3

5.4 Kolmogorov distribution (a = —2)

For o« = —2 we obtain

and hence

Gooafr) =1 -2 (~1)He™™ =
j=1

[e.e]

k=1k#j

Ccos Tj

Il 0o,—2 = H (1—(/k)*) = - 5

o

j=—o0

Z (_1)j6_mj27

(62)

(63)

which is known as Kolmogorov’s distribution. Using the Jacobi identity, (63]) can be represented
as an infinite product (see Chung [2]):

1l —eI®
Gooele) = I = (69
The corresponding Laplace transform reads
[e.9]
1 TS
li - = = 65
oo ™ 2(5) ]1;[1 1+ s/j2 sinhmy/s’ (65)
where the last equality follows from
sinhz:zH(1+,2—7T2). (66)
=7
See also Kac and Siegert [5] and Biane et al. [I] for more applications of the case o = —2.

11



Table 2: Similar values as in Table [I now for n = 100 and again x = 0.99/1, .

x

Fn,a

CLT

erfe

do

02

-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0

1.6186341
2.3887454
5.1355037
18.403708
99.000000
664.74825
4999.5000
40096.212
334966.50

0.38945105
0.40771270
0.44575400
0.50696945
0.52669567
0.52281707
0.51755849
0.51287625
0.50881793

0.50626942
0.50877921
0.51618014
0.53252552
0.53982784
0.53763922
0.53459179
0.53196106
0.52978242

0.50629932
0.50883121
0.51630710
0.53270653
0.53996093
0.53777378
0.53472196
0.53208556
0.52990111

0.91e-2
0.13e-1
0.12e-1
0.19e-2
0.13e-5
0.17e-4
0.43e-4
0.74e-4
0.11e-3

0.60e-2
0.41e-2
0.81e-3
0.39e-3
0.31e-7
0.84e-7
0.42e-6
0.10e-5
0.20e-5

Table 3: Similar values as in Table [I now for n = 100, £ = 0.50/tp, o, Gpn,o and the corresponding

CLT and expansion (29).

(67

x

Gn,a

CLT

erfc

)

)

-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0

0.8174920
1.2064370
2.5936888
9.2948020
50.000000
335.73144
2525.0000
20250.612
169175.00

0.1975542e-0
0.6433725e-1
0.4228630e-3
0.1518863e-7
0.3200065¢-9
0.1657144e-8
0.1908872e-7
0.1545196¢-6
0.8285763e-6

0.2159960e-0
0.1355787e-0
0.2125793e-1
0.2242152e-4
0.2866516¢-6
0.1154000e-5
0.7095496e-5
0.3035652¢-4
0.9343075e-4

0.1352230e-0
0.4486680e-1
0.3132675e-3
0.1198045e-7
0.2562014e-9
0.1318627¢-8
0.1508219e-7
0.1214514e-6
0.6486733e-6

0.24e-1
0.21e-1
0.74e-2
0.85e-3
0.84e-5
0.10e-3
0.21e-3
0.31e-3
0.41e-3

0.66e-3
0.43e-2
0.85e-3
0.35e-4
0.31e-6
0.17e-6
0.98e-6
0.22e-5
0.38e-5

12



6 Numerical experiments

In Table [Il we give numerical details of the asymptotic approximations. We take n = 10 for all
cases and x = 0.99/, o, these values being close to the mean. F), , is the value obtained from
multi-precision arithmetic, C LT denotes the value obtained from (B0]) (also for values of o < —%,
where the CLT approach is no longer valid). The column with erfc gives the values obtained from
[B0) taking only the complementary error function, and dy, 2 are the relative errors taking also the
terms Cy and Cy, Cq in the expansion.

In Table 2l we use n = 100 and again = 0.99uy, . In TableBlwe use n = 100 and = = 0.504y,4,
which is outside the mean values, but now for G,, , and the corresponding C'LT" and asymptotic
expansion ([29) (because F, , is almost equal to unity in some cases).

We observe that in Table[I] and Table 2l the values of the columns C' LT and erfc are quite close,
because x and n are close to the mean. In all cases the results become sharper when we add the
terms Cp and C in the asymptotic expansion ([B0). The computations are done in Maple with
30-digits arithmetic, except for the computation of F,, o(z), where for n = 100 we took 300 digits.
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